skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Connolly, Catherine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Au nanoclusters often demonstrate useful optical properties such as visible/near‐infrared photoluminescence, in addition to remarkable thermodynamic stability owing to their superatomic behavior. The smallest of the 8esuperatomic Au nanoclusters, Au11, has limited applications due to its lack of luminescence and relatively low stability. In this work, we investigate the introduction of a single Pt dopant to the center of a halide‐ and triphenylphosphine‐ligated Au11nanocluster, affording a cluster with a proposed molecular formula PtAu10(PPh3)7Br3. Electrochemical and spectroscopic analysis reveal an expansion of the HOMO–LUMO gap due to the Pt dopant, as well as relatively strong near‐infrared (NIR) photoluminescence which is atypical for an M11cluster (λmax= 700 nm, Φ = 1.88 %). The Pt dopant additionally boosted photostability; more than tenfold. Lastly, we demonstrate the application of the PtAu10cluster's NIR photoluminescence in the detection of the nitroaromatic compound 2,4‐dinitrotoluene, with a limit‐of‐detection of 9.52 μM (1.74 ppm). The notable ability of a single central Pt dopant to unlock photoluminescence in a non‐luminescent nanocluster highlights the advantages of heterometal doping in the tuning of both the optical and thermodynamic properties of Au nanoclusters. 
    more » « less
    Free, publicly-accessible full text available March 17, 2026
  2. Ustaoglu, Eda (Ed.)